小学数学《化简比》教案

时间:2024-07-11 21:52:12
小学数学《化简比》教案

小学数学《化简比》教案

作为一名教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么写教案需要注意哪些问题呢?以下是小编为大家整理的小学数学《化简比》教案,仅供参考,希望能够帮助到大家。

小学数学《化简比》教案1

设计说明

本节课是在学生学习了比的意义以及比与除法、分数的关系等相关知识的基础上进行教学的,本节课的设计有以下几方面特点:

1、充分利用教材提供的素材。在导入新课的过程中,利用教材提供的素材,让学生动手操作,亲手调制蜂蜜水,激发学生的学习兴趣,使学生在动手操作中体验到调制的过程,并说出自己调制的方法,为下面的学习打下基础。

2、合作探究的学习方式贯穿整个教学。

在整节课的教学中,充分遵循以学生为主体的原则,适当的引导,提出有重要价值的问题,让学生通过观察、合作、探究的方式找到问题的答案,让学生在学习的过程中体验到成功的快乐。

课前准备

教师准备PPT课件课堂活动卡

学生准备蜂蜜水量筒水杯

教学过程

⊙创设情境,提出问题

1、把学生分成四个小组进行调制蜂蜜水的实验活动。(各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水)

2、各小组选出代表在全班进行汇报。出示课堂活动卡。

预设

生1:我调制的这杯蜂蜜水用了40mL蜂蜜、360mL水。

生2:我调制的这杯蜂蜜水用了2小杯蜂蜜、18小杯水。

3、议一议,哪个小组调制出的蜂蜜水更甜?你用的是什么方法?(学生讨论并交流方法)

4、除了这些方法,我们也可以用化简比的方法来判断。(板书课题)

设计意图:通过让学生动手操作,亲自调制蜂蜜水,激发学生学习的热情,让学生在动手操作中亲自体验调制的过程,并且用语言叙述自己的调制方法,在议一议中展开对新知的探究。

⊙探究新知,解决问题

1、观察情境图,获取信息。(课件出示教材72页情境图)

学生根据图中的内容,找出所需的信息。

蜂蜜水

男孩:3小杯12小杯

女孩:4小杯16小杯

2、体会化简比的必要性。

(1)探究判断方法。

联系我们学过的知识,你想到了用什么方法进行比较?

学生小组内讨论,得出可以通过求出男孩和女孩各自杯中蜂蜜和水的比来比较。

学生写出比。

男孩:3∶12

女孩:4∶16

(2)哪杯水更甜?现在你能判断出来了吗?你又遇到了什么问题?

引导学生发现,现在无法比较,如果能知道两杯蜂蜜水中平均1小杯蜂蜜用了几小杯水就可以比较了。

(3)怎样才能知道平均1小杯蜂蜜用了几小杯水呢?请在小组内讨论一下。

①学生思考,小组内讨论。

②小组交流看法。

③指名汇报,说明理由。

在交流的过程中教师要引导学生理解先把比转化成分数,利用分数的基本性质约分,再转化成比的方法。

(4)得出结论。

3∶12===1∶4

4∶16===1∶4

提问:你发现了什么?

(两杯蜂蜜水中蜂蜜与水的比都是1∶4,所以两杯水一样甜)

(5)揭示化简比的必要性。

当比的前项和后项数值较大时,有时会给判断带来不便,这时就需要根据一定的规则,在不改变比值大小的情况下,将比的前项和后项同时缩小,这种现象称之为化简比。

设计意图:让学生在解决“哪杯水更甜”的同时,加深对比的意义的理解,进一步感受比与除法、分数之间的关系。

3、理解最简整数比。

像1∶9,3∶7……这样的'比我们称为最简整数比。

(1)观察一下最简整数比的前项和后项,你发现它们之间是什么关系了吗?你能说说什么样的比是最简整数比吗?

(2)学生汇报发现。

根据学生的汇报教师小结:当比的前项和后项都是整数,并且比的前项和后项的最大公因数是1时,这样的比就是最简整数比。

4、探究化简比的方法。

下面的比是最简整数比吗?你有什么办法把它们化成最简整数比呢?

24∶42 ∶ 0.7∶0.8

(1)小组讨论。

(2)学生尝试解答,教师巡视指导。引导学生采用不同的方法化简比。

(3)全班交流化简比的方法。

预设

生1:我利用分数的基本性质进行化简。

生2:我利用商不变的规律进行化简。

生3:我利用除法进行化简。

生4:我利用比的基本性质进行化简。比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。

如果有学生用此法,教师因势利导进行教学,如果没有,教师从比和分数的关系入手,引导教学。

小学数学《化简比》教案2

教学目标:

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

教学重难点:

1、运用商不变的性质或分数的基本性质化简比。

2、解决一些简单的实际问题。

学习目标:

1、理解比的意义,感受比与除法、分数之间的关系,体会化简比的必要性。

2、学会化简比的方法。

教学准备:

ppt课件

教学过程:

一、导入

(一)导情趣(抢答式复习)

1、 60÷10 = 600÷( )= ( )÷1 = 0.6÷( )

说一说:解答这两道题你用的是什么知识?

(除法中商不变的性质和分数的基本性质)

除法中商不变的性质是什么?分数的基本性质又是什么?

2、比与除法、分数有什么关系?

(用字母表示:a:b=a÷b=a/b)

(二)导目标

除法中有商不变的性质,分数中有分数的基本性质,那么比有什么性质呢?今天我们就一起来研究——比的化简。(板书:比的化简)

下面请同学们一起来看一看本节课的学习目标。(课件出示目标)

学习目标:

1、理解比的意义,感受比与除法、分数之间的关系。

2、体会化简比的必要性,学会化简比的方法。

小学数学《化简比》教案3

一、教学内容分析

本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。

二、学生分析

学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。

三、学习目标(以学生为主语)

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。

四、教学活动(此环节可以是课堂实录)

1.导入

问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?

过程:互相讨论,发表看法,如何比较。(学生发言老师板书)

小结:比较的结果一样甜,分数可以约分比也可以化简。

2.新授

①引入“最简单整数比”的概念。

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!

③出示问题尝试并讨论:

12:8 0.7:0.8 2/5:1/4

1.能不能把整数比化简成最简单的整数比?如何化?

2.能不能把分数比化简成最简单的整数比?如何化?

3.能不能把小数比化简成最简单的整数比?如何化?

④交流

1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

⑤介绍比的基本性质

3.练习

1、P51页化简下面各比。(独立完成,集体评讲)

2、练习:做书上练一练的第1、2题。

五、教师反思

比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。

小学数学《化简比》教案4

1、出示问题:化简比

24:42 0.7:0.8 2/5:1/4

2、导学法

学法指导:

每组任选一题、分析比的类型、个人独立解答、交流解题依据、组内总结方法

3、各小组自学,交流讨论。

4、汇报交流

你们组是用什么方法学习的?是怎样学的?都学会了什么?

(指名板书计算过程)

5、指导总结化简比的方法

(1)化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

(2)怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

(3)如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

6、智力大比拼:总结比的基本性质

你能根据商不变的性质和分数的基本性质概括出比的基本性质吗?

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

利用比的基本性质也可以化简比:

14:21 = (14÷7):(21÷7) =2:3

7、老师小结:看来,化简比的方法不,不过都有一个共同目标:化简成最简单的整数比;那么化简比与求比值有什么区别呢?(课件)

四、练习(课件)

1、化简比:

15:21 0.12:0.4 2/3:1/2 1:2/3

2、连一连

3、判断

4、写出各杯中糖与水的质量比。

5、解决问题

五、回顾学习目标,进行本课总结

回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

小结:生活中有很多问题需要通过化简比来解决,因此我们必须学会根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。

板书:

比的化简

a:b=a÷b=a/b

40:36=40/360=1/9=1:9

2:18=2/18=1/9=1:9

小学数学《化简比》教案5

(出示情景图)

淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?

1、导学法

估一估、想一想、算一算

2、小组互相讨论,发表看法。

40:360 2:18

3、质疑问难

直接比较他们俩谁调制的蜂蜜水更甜还是有困难的,那么你能不能联系比与除法和分数的关系,来想办法解决呢?小组讨论一下,该如何来计算并比较呢?

4、各组自学,交流汇报。

你们运用了什么好方法?都学会了什么?

学生边汇报,老师边板书。

40:360=40/360=1/9=1:9

2:18=2/18=1/9=1:9

5、小结:比较的结果一样甜,由此可见,比的化简对我们解决生活中的实际问题是有很大帮助的,从中我们也体会到了化简比是有必要的。那么到底什么样的比才是最简单的整数比呢?我们来看大屏幕。

6、导入“最简单整数比”的概念。

比的前项与后项只有公因数1,这样的整数比就是最简整数比。也就是说,

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

你能列举出几个最简整数比吗?(指名回答)

7、同学们,你们想知道这些最简单的整数比是用什么方法化简得到的吗?下面我们就来学习第二个目标。(出示目标)

小学数学《化简比》教案6

学材分析

已经学了比、除法、分数之间的关系,再来学会化简比的方法。

学情分析

根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。重点理解比的基本性质。难点正确应用比的基本性质化简比。

学习目标

1、理解比的基本性质。

2、正确应用比的基本性质化简比。

3、培养学生的抽象概括能力,渗透转化的数学思想。

导学策略

引导学生发现比的基本性质。

教学准备

习题准备

老师活动:

一、复习引入

(一)复习商不变的性质

1.谁能直接说出6025的商?

2.你是怎么想的?

3.根据是什么?

(二)复习分数的基本性质

根据是什么?内容是什么?

(三)求比值

二、讲授新课

我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?

(一)比的基本性质

1、出示8∶4和2∶1这两个比。

2.教师提问

这两个比有什么共同点吗?

这两个比有什么不同点吗?你是怎么想的?

(1)教师板书:比的前项和后项同时

乘以或者同时除以相同的数(0除外),比值不变.

板书课题:比的基本性质

(2)教师强调:同时相同0除外几个关键词

(二)化简比

1.练习引入

学校有8个篮球,12个排球,篮球和排球个数的比是多少?

(1)篮球和排球的个数比是8∶12

(2)篮球和排球的个数比是2∶3

讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?

2.最简单的整数比

最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.

3.化简比

例1.把下面各比化成最简单的整数比.

(1)14∶21=(147)∶(217)=2∶3讨论:化简整数比的方法是什么?

(2)∶=(18)∶(18)=3∶4

(3)1.25∶2=(1.25100)∶(2100)=125∶200=5∶8

1.25∶2=(1.254)∶(24)=5∶8(更好)

讨论:怎样把小数比化成最简单的整数比?

4.小结化简比的方法

(1)都化成整数比

(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.

(三)区别化简比和求比值

1.练习

化简比:化成最简单的整数比

比值:求出商。

25∶100

4.2∶1.4

例如:25∶100化简比的结果是,读作1比4,求比值的结果是,读作四分之

三、巩固练习

(一)化简比

(二)选择

(三)思考题

六一班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是().四、课堂小结通过今天的学习,你学到了哪些新知识?什么是比的基本性质?怎样化简比?

四、课堂作业:《伴你成长》

学生活动;

口答。

约分:

通分:

3∶28∶47∶2127∶95∶2516∶424∶52∶1

(比值都相等)

(前项和后项都不同)

我们可以说8∶4和2∶1相等吗?

(1)根据比与除法的关系(商不变的性质)

8∶4=84=(84)(44)=21=2∶1

(2)根据比与分数的关系(分数基本性质)

8∶4=2∶1

3.学生尝试概括比的基本性质(演示比的基本性质)

讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?

2.讨论:化简比和求比值的区别是什么?

区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.

6∶10∶0.3∶0.4

12∶21∶20.25∶1

1.1千米∶20千米=()

(1)1∶20(2)1000∶20(3)5∶1

2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()

(1)20∶21(2)21∶20(3)7∶10

教学反思:化简比中小数与小数的比学生掌握的不够。

《小学数学《化简比》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式