高中数学说课稿

时间:2024-11-07 19:58:39
高中数学说课稿锦集6篇

高中数学说课稿锦集6篇

在教学工作者实际的教学活动中,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。写说课稿需要注意哪些格式呢?下面是小编帮大家整理的高中数学说课稿6篇,欢迎大家分享。

高中数学说课稿 篇1

各位评委老师好:今天我说课的题目是

是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

一、 教材分析

是在学习了基础上进一步研究 并为后面学习 做准备,在整个

高中数学中起着承上启下的作用,因此本节内容十分重要。

根据新课标要求和学生实际水平我制定以下教学目标

1、 知识能力目标:使学生理解掌握

2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力

3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

观察勇于思考的学习习惯和严谨 的科学态度

根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是

二、教法学法

根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

三、 教学过程

四、 教学程序及设想

1、由……引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:……

2、由实例得出本课新的知识点是:……

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习……

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

五、教学评价

学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应

当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

高中数学说课稿 篇2

各位老师:

大家好!

我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点

重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

二、教学目标分析

1.知识与技能目标

(1)通过试验理解基本事件的概念和特点

(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:

经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:

(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

三、教法与学法分析

1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课

在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

㈡思考交流、形成概念

学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

[基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.]

「设计意图」让学生从 ……此处隐藏11186个字……学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

⒉教材的重点和难点

重点是对周期变换、相位变换规律的理解和应用。

难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

⒊教材内容的安排和处理

函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

二、目的分析

⒈知识目标

掌握相位变换、周期变换的变换规律。

⒉能力目标

培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

⒊德育目标

在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。

⒋情感目标

通过学数学,用数学,进而培养学生对数学的兴趣。

三、教具使用

①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

四、教法、学法分析

本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。

以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。

五、教学过程

教学过程设计:

预备知识

一、问题探究

⑴师生合作探究周期变换

⑵学生自主探究相位变换

二、归纳概括

三、实践应用

教学程序

设计说明

〖预备知识

1我们已经学习了几种图象变换?

2这些变换的规律是什么?

帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。

〖问题探究

(一)师生合作探究周期变换

(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin

x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。

(2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?

(二)学生自主探究相位变换

(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?

(2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。

设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。

设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。

师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。

〖归纳概括

通过以上探究,你能否总结出周期变换和相位变换的一般规律?

设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。

〖实践应用

(一)应用举例

(1)用五点法作出y=sin(2x+)一个周期内的简图。

(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换

(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。

(4)归纳总结

从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.

(二)分层训练

a组题(基础题)

如何完成下列图象的变换:

①y=sin3x→y=sin(3x+1)

②y=sin(x+1) →y=sin(3x+1)

b组题(中等题)

如何完成下列图象的变换:

①y=sin3x→y=sin(3x+1)

②y=sin(x+1) →y=sin(3x+1)

③y=sinx →y=sin(3x+1)

c组题(拓展题)

①如何完成下列图象的变换:

y=sinx →y=sin(3x+1)

②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。

让学生用五点法作出这个图象是为了验证变换方法是否正确。

给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。

这个步骤主要目的是培养学生的探究能力和动手能力。

这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。

a组题重在基础知识的掌握,

由基础较薄弱的同学完成。

b组比a组增加了第③小题,

重在对两种变换的综合应用。

c组除了考查知识的综合应用,

还要求学生对新问题进行探究,

有较大难度,适合基础较好的

同学完成。

作业:

(1)必做题

(2)选做题

作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。

六、评价分析

在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。

调节与反馈:

⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。

⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。

附:板书设计

《高中数学说课稿锦集6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式