高中数学说课稿模板合集9篇
作为一位不辞辛劳的人民教师,总归要编写说课稿,认真拟定说课稿,那么你有了解过说课稿吗?以下是小编为大家收集的高中数学说课稿9篇,仅供参考,欢迎大家阅读。
高中数学说课稿 篇11. 教材分析
1-1教学内容及包含的知识点
(1) 本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容。
(2) 包含知识点:点到直线的距离公式和两平行线的距离公式。
1-2教材所处地位、作用和前后联系
本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1-3教学大纲要求
掌握点到直线的距离公式
1-4高考大纲要求及在高考中的显示形式
掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1-5教学目标及确定依据
教学目标
(1) 掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2) 培养学生探究性思维方法和由特殊到一般的研究能力。
(3) 认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。
(4) 渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:
中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)
1-6教学重点、难点、关键
(1) 重点:点到直线的距离公式
确定依据:由本节在教材中的地位确定
(2) 难点:点到直线的距离公式的推导
确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。
分析“尝试性题组”解题思路可突破难点
(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
2.教法
2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。
确定依据:
(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。
(2)事物之间相互联系,相互转化的辩证法思想。
2-2教具:多媒体和黑板等传统教具
3. 学法
3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
3-2学情:
(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。
(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。
(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。
3-3学具:直尺、三角板
4. 教学评价
学生完成反思性学习报告,书写要求:
(1) 整理知识结构。
(2) 总结所学到的基本知识,技能和数学思想方法。
(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因。
(4) 谈谈你对老师教法的建议和要求。
作用:
(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。
(2) 报告的写作本身就是一种创造性活动。
(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。
5. 板书设计
(略)
6. 教学的反思总结
心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。
高中数学说课稿 篇2一、说教材:
1、教材的地位与作用
导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。
2、教学的重点、难点、关键
教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵
1) 从割线到切线的过程中采用的逼近方法;
2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.
二、说教学目标:
根据新课程标准的要求、学生的认知水平,确定教学目标如下:
1、知识与技能 :
通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:
经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会 ……此处隐藏15315个字……要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。
二、教学目标
1、学习目标
(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
2、能力目标
(1)能够把一句话一个事件用集合的方式表示出来。
(2)准确理解集合与及集合内的元素之间的关系。
3、情感目标
通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。
三、教学重点与难点
重点 集合的基本概念与表示方法;
难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;
四、教学方法
(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;
(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
五、学习方法
(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,
教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。
(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培
优扶差,满足不同。”
六、教学思路
具体的思路如下
复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。
一、 引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
二、 正体部分
学生阅读教材,并思考下列问题:
(1)集合有那些概念?
(2)集合有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)集合的有关概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,
都可以称作对象。
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由
这些对象的全体构成的集合。
(3)元素:集合中每个对象叫做这个集合的元素。
集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??
1。 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,
对学生的例子予以讨论、点评,进而讲解下面的问题。
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A
要注意“∈”的方向,不能把a∈A颠倒过来写。 (举例)
集合A={3,4,6,9}a=2 因此我们知道a?A
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了。
(2)互异性:集合中的元素一定是不同的。
(3)无序性:集合中的元素没有固定的顺序。
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分?,{?},{0},0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合。记作N
(2)正整数集:非负整数集内排除0的集。记作N*或N+
(3)整数集:全体整数的集合。记作Z
(4)有理数集:全体有理数的集合。记作Q
(5)实数集:全体实数的集合。记作R
注:(1)自然数集包括数0。
(2)非负整数集内排除0的集。记作N*或N+,Q、Z、R等其它数集内排
除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},?;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、 归纳小结与作业
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
书面作业:习题1。1,第1— 4题
文档为doc格式