初中数学知识点

时间:2024-07-11 21:52:07
初中数学知识点大全(完整版)

初中数学知识点大全(完整版)

漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。哪些才是我们真正需要的知识点呢?以下是小编精心整理的初中数学知识点大全(完整版),欢迎阅读,希望大家能够喜欢。

初中数学知识点大全(完整版)1

知识点总结

一.一元二次方程的根:

①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;

②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.

③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于 和 的代数式的值,如

④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。

二.解一元二次方程应用题:

它是列一元一次方程解应用题的拓展,解题方法是相同的。其一般步骤为:

1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;

2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;

3.解:解所列方程,求出解来;

4.验:一是检验是否为方程的解,二是检验是否为应用题的解;

5..答:怎么问就怎么答,注意不要漏写单位名称。

常见考法

(1)考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;

(2)在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);

(3)列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式

误区提醒

(1)已知方程根的情况,确定字母系数的取值范围时,忽视了对二次项系数的讨论;

(2)忽视“方程有实根”的含义,丢掉判别式等于零的情况;

(3)不挖掘题目中的隐含条件导致错解;

(4)忽视等式的基本性质,造成失根;

(5)忽略实际问题中对方程的根的检验,造成错解。

初中数学知识点大全(完整版)2

第一章 丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

正有理数 整数

有理数 零 有理数

负有理数 分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

(3)运算律

加法交换律 加法结合律

乘法交换律 乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

第三章 整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

……此处隐藏16917个字……p>41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理 四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

51、推论 任意多边的外角和等于360°

52、平行四边形性质定理1 平行四边形的对角相等

53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形

58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60、矩形性质定理1 矩形的四个角都是直角

61、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形

63、矩形判定定理2 对角线相等的平行四边形是矩形

64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1 四边都相等的四边形是菱形

68、菱形判定定理2 对角线互相垂直的平行四边形是菱形

69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

83、(1)比例的基本性质: 如果a:b=c:d,那么ad=bc , 如果 ad=bc ,那么a:b=c:d

84、(2)合比性质: 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质: 如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3 三边对应成比例,两三角形相似(SSS)

95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2 相似三角形周长的比等于相似比

98、性质定理3 相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

初中数学知识点大全(完整版)15

①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

《初中数学知识点大全(完整版).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式